\(\int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx\) [304]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 218 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\frac {2 a^{5/2} (c-d)^2 (B c-A d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{d^{7/2} \sqrt {c+d} f}+\frac {2 a^3 \left (5 A (3 c-7 d) d-B \left (15 c^2-35 c d+32 d^2\right )\right ) \cos (e+f x)}{15 d^3 f \sqrt {a+a \sin (e+f x)}}+\frac {2 a^2 (5 B c-5 A d-8 B d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f} \]

[Out]

-2/5*a*B*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/d/f+2*a^(5/2)*(c-d)^2*(-A*d+B*c)*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)
/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))/d^(7/2)/f/(c+d)^(1/2)+2/15*a^3*(5*A*(3*c-7*d)*d-B*(15*c^2-35*c*d+32*d^2))
*cos(f*x+e)/d^3/f/(a+a*sin(f*x+e))^(1/2)+2/15*a^2*(-5*A*d+5*B*c-8*B*d)*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/d^2/f

Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {3055, 3060, 2852, 214} \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\frac {2 a^{5/2} (c-d)^2 (B c-A d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{d^{7/2} f \sqrt {c+d}}+\frac {2 a^3 \left (5 A d (3 c-7 d)-B \left (15 c^2-35 c d+32 d^2\right )\right ) \cos (e+f x)}{15 d^3 f \sqrt {a \sin (e+f x)+a}}+\frac {2 a^2 (-5 A d+5 B c-8 B d) \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{5 d f} \]

[In]

Int[((a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

(2*a^(5/2)*(c - d)^2*(B*c - A*d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])
])/(d^(7/2)*Sqrt[c + d]*f) + (2*a^3*(5*A*(3*c - 7*d)*d - B*(15*c^2 - 35*c*d + 32*d^2))*Cos[e + f*x])/(15*d^3*f
*Sqrt[a + a*Sin[e + f*x]]) + (2*a^2*(5*B*c - 5*A*d - 8*B*d)*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(15*d^2*f)
- (2*a*B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(5*d*f)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3055

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*
x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))
*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f}+\frac {2 \int \frac {(a+a \sin (e+f x))^{3/2} \left (\frac {1}{2} a (3 B c+5 A d)-\frac {1}{2} a (5 B c-5 A d-8 B d) \sin (e+f x)\right )}{c+d \sin (e+f x)} \, dx}{5 d} \\ & = \frac {2 a^2 (5 B c-5 A d-8 B d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f}+\frac {4 \int \frac {\sqrt {a+a \sin (e+f x)} \left (-\frac {1}{4} a^2 (B c (5 c-17 d)-5 A d (c+3 d))-\frac {1}{4} a^2 \left (5 A (3 c-7 d) d-B \left (15 c^2-35 c d+32 d^2\right )\right ) \sin (e+f x)\right )}{c+d \sin (e+f x)} \, dx}{15 d^2} \\ & = \frac {2 a^3 \left (5 A (3 c-7 d) d-B \left (15 c^2-35 c d+32 d^2\right )\right ) \cos (e+f x)}{15 d^3 f \sqrt {a+a \sin (e+f x)}}+\frac {2 a^2 (5 B c-5 A d-8 B d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f}-\frac {\left (a^2 (c-d)^2 (B c-A d)\right ) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{d^3} \\ & = \frac {2 a^3 \left (5 A (3 c-7 d) d-B \left (15 c^2-35 c d+32 d^2\right )\right ) \cos (e+f x)}{15 d^3 f \sqrt {a+a \sin (e+f x)}}+\frac {2 a^2 (5 B c-5 A d-8 B d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f}+\frac {\left (2 a^3 (c-d)^2 (B c-A d)\right ) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{d^3 f} \\ & = \frac {2 a^{5/2} (c-d)^2 (B c-A d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{d^{7/2} \sqrt {c+d} f}+\frac {2 a^3 \left (5 A (3 c-7 d) d-B \left (15 c^2-35 c d+32 d^2\right )\right ) \cos (e+f x)}{15 d^3 f \sqrt {a+a \sin (e+f x)}}+\frac {2 a^2 (5 B c-5 A d-8 B d) \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{15 d^2 f}-\frac {2 a B \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{5 d f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 5.38 (sec) , antiderivative size = 992, normalized size of antiderivative = 4.55 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\frac {(a (1+\sin (e+f x)))^{5/2} \left (-30 \sqrt {d} \left (A d (-2 c+5 d)+B \left (2 c^2-5 c d+5 d^2\right )\right ) \cos \left (\frac {1}{2} (e+f x)\right )-5 d^{3/2} (-2 B c+2 A d+5 B d) \cos \left (\frac {3}{2} (e+f x)\right )+3 B d^{5/2} \cos \left (\frac {5}{2} (e+f x)\right )-\frac {15 (c-d)^2 (B c-A d) \left ((c+d) \left (e+f x-2 \log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )\right )+\sqrt {c+d} \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-2 c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+3 d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]\right )}{(c+d)^{3/2}}+\frac {15 (c-d)^2 (B c-A d) \left ((c+d) \left (e+f x-2 \log \left (\sec ^2\left (\frac {1}{4} (e+f x)\right )\right )\right )-\sqrt {c+d} \text {RootSum}\left [c+4 d \text {$\#$1}+2 c \text {$\#$1}^2-4 d \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {-c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )+d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right )-2 c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}-2 d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}+c \sqrt {d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+d^{3/2} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2-3 d \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^2+c \sqrt {c+d} \log \left (-\text {$\#$1}+\tan \left (\frac {1}{4} (e+f x)\right )\right ) \text {$\#$1}^3}{-d-c \text {$\#$1}+3 d \text {$\#$1}^2-c \text {$\#$1}^3}\&\right ]\right )}{(c+d)^{3/2}}+30 \sqrt {d} \left (A d (-2 c+5 d)+B \left (2 c^2-5 c d+5 d^2\right )\right ) \sin \left (\frac {1}{2} (e+f x)\right )-5 d^{3/2} (-2 B c+2 A d+5 B d) \sin \left (\frac {3}{2} (e+f x)\right )-3 B d^{5/2} \sin \left (\frac {5}{2} (e+f x)\right )\right )}{30 d^{7/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \]

[In]

Integrate[((a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

((a*(1 + Sin[e + f*x]))^(5/2)*(-30*Sqrt[d]*(A*d*(-2*c + 5*d) + B*(2*c^2 - 5*c*d + 5*d^2))*Cos[(e + f*x)/2] - 5
*d^(3/2)*(-2*B*c + 2*A*d + 5*B*d)*Cos[(3*(e + f*x))/2] + 3*B*d^(5/2)*Cos[(5*(e + f*x))/2] - (15*(c - d)^2*(B*c
 - A*d)*((c + d)*(e + f*x - 2*Log[Sec[(e + f*x)/4]^2]) + Sqrt[c + d]*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3
+ c*#1^4 & , (-(c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]) - d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]] - d*Sqrt[c + d]*L
og[-#1 + Tan[(e + f*x)/4]] - 2*c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 - 2*d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]
]*#1 - c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 + c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + d^(3/2)*Log
[-#1 + Tan[(e + f*x)/4]]*#1^2 + 3*d*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 - c*Sqrt[c + d]*Log[-#1 + Tan
[(e + f*x)/4]]*#1^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) & ]))/(c + d)^(3/2) + (15*(c - d)^2*(B*c - A*d)*((c + d)*
(e + f*x - 2*Log[Sec[(e + f*x)/4]^2]) - Sqrt[c + d]*RootSum[c + 4*d*#1 + 2*c*#1^2 - 4*d*#1^3 + c*#1^4 & , (-(c
*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]) - d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]] + d*Sqrt[c + d]*Log[-#1 + Tan[(e +
 f*x)/4]] - 2*c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 - 2*d^(3/2)*Log[-#1 + Tan[(e + f*x)/4]]*#1 + c*Sqrt[c +
 d]*Log[-#1 + Tan[(e + f*x)/4]]*#1 + c*Sqrt[d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + d^(3/2)*Log[-#1 + Tan[(e + f
*x)/4]]*#1^2 - 3*d*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1^2 + c*Sqrt[c + d]*Log[-#1 + Tan[(e + f*x)/4]]*#1
^3)/(-d - c*#1 + 3*d*#1^2 - c*#1^3) & ]))/(c + d)^(3/2) + 30*Sqrt[d]*(A*d*(-2*c + 5*d) + B*(2*c^2 - 5*c*d + 5*
d^2))*Sin[(e + f*x)/2] - 5*d^(3/2)*(-2*B*c + 2*A*d + 5*B*d)*Sin[(3*(e + f*x))/2] - 3*B*d^(5/2)*Sin[(5*(e + f*x
))/2]))/(30*d^(7/2)*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(542\) vs. \(2(192)=384\).

Time = 2.94 (sec) , antiderivative size = 543, normalized size of antiderivative = 2.49

method result size
default \(\frac {2 \left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (-3 B \left (a -a \sin \left (f x +e \right )\right )^{\frac {5}{2}} \sqrt {a \left (c +d \right ) d}\, d^{2}+5 A \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, a \,d^{2}-15 A \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} c^{2} d +30 A \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} c \,d^{2}-15 A \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} d^{3}-5 B \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, a c d +20 B \left (a -a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {a \left (c +d \right ) d}\, a \,d^{2}+15 B \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} c^{3}-30 B \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} c^{2} d +15 B \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, d}{\sqrt {a c d +a \,d^{2}}}\right ) a^{3} c \,d^{2}+15 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a^{2} c d -45 A \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a^{2} d^{2}-15 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a^{2} c^{2}+45 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a^{2} c d -60 B \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a \left (c +d \right ) d}\, a^{2} d^{2}\right )}{15 d^{3} \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(543\)

[In]

int((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

2/15*(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(-3*B*(a-a*sin(f*x+e))^(5/2)*(a*(c+d)*d)^(1/2)*d^2+5*A*(a-a*sin(
f*x+e))^(3/2)*(a*(c+d)*d)^(1/2)*a*d^2-15*A*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^3*c^2*d+30*
A*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^3*c*d^2-15*A*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d
+a*d^2)^(1/2))*a^3*d^3-5*B*(a-a*sin(f*x+e))^(3/2)*(a*(c+d)*d)^(1/2)*a*c*d+20*B*(a-a*sin(f*x+e))^(3/2)*(a*(c+d)
*d)^(1/2)*a*d^2+15*B*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^3*c^3-30*B*arctanh((a-a*sin(f*x+e
))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^3*c^2*d+15*B*arctanh((a-a*sin(f*x+e))^(1/2)*d/(a*c*d+a*d^2)^(1/2))*a^3*c*d^2
+15*A*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^2*c*d-45*A*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^2*d^2-1
5*B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^2*c^2+45*B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^2*c*d-60*
B*(a-a*sin(f*x+e))^(1/2)*(a*(c+d)*d)^(1/2)*a^2*d^2)/d^3/(a*(c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 499 vs. \(2 (192) = 384\).

Time = 1.30 (sec) , antiderivative size = 1314, normalized size of antiderivative = 6.03 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[1/30*(15*(B*a^2*c^3 - (A + 2*B)*a^2*c^2*d + (2*A + B)*a^2*c*d^2 - A*a^2*d^3 + (B*a^2*c^3 - (A + 2*B)*a^2*c^2*
d + (2*A + B)*a^2*c*d^2 - A*a^2*d^3)*cos(f*x + e) + (B*a^2*c^3 - (A + 2*B)*a^2*c^2*d + (2*A + B)*a^2*c*d^2 - A
*a^2*d^3)*sin(f*x + e))*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 - (6*a*c*d + 7
*a*d^2)*cos(f*x + e)^2 - 4*(c^2*d + 4*c*d^2 + 3*d^3 - (c*d^2 + d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)
*cos(f*x + e) - (c^2*d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*
sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2)*cos(f*x + e) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d
^2 + 2*(3*a*c*d + 4*a*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*cos(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^
2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin
(f*x + e))) + 4*(3*B*a^2*d^2*cos(f*x + e)^3 - 15*B*a^2*c^2 + 5*(3*A + 7*B)*a^2*c*d - (35*A + 32*B)*a^2*d^2 + (
5*B*a^2*c*d - (5*A + 11*B)*a^2*d^2)*cos(f*x + e)^2 - (15*B*a^2*c^2 - 5*(3*A + 8*B)*a^2*c*d + 2*(20*A + 23*B)*a
^2*d^2)*cos(f*x + e) - (3*B*a^2*d^2*cos(f*x + e)^2 - 15*B*a^2*c^2 + 5*(3*A + 7*B)*a^2*c*d - (35*A + 32*B)*a^2*
d^2 - (5*B*a^2*c*d - (5*A + 14*B)*a^2*d^2)*cos(f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(d^3*f*cos(f*
x + e) + d^3*f*sin(f*x + e) + d^3*f), 1/15*(15*(B*a^2*c^3 - (A + 2*B)*a^2*c^2*d + (2*A + B)*a^2*c*d^2 - A*a^2*
d^3 + (B*a^2*c^3 - (A + 2*B)*a^2*c^2*d + (2*A + B)*a^2*c*d^2 - A*a^2*d^3)*cos(f*x + e) + (B*a^2*c^3 - (A + 2*B
)*a^2*c^2*d + (2*A + B)*a^2*c*d^2 - A*a^2*d^3)*sin(f*x + e))*sqrt(-a/(c*d + d^2))*arctan(1/2*sqrt(a*sin(f*x +
e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(-a/(c*d + d^2))/(a*cos(f*x + e))) + 2*(3*B*a^2*d^2*cos(f*x + e)^3 - 15
*B*a^2*c^2 + 5*(3*A + 7*B)*a^2*c*d - (35*A + 32*B)*a^2*d^2 + (5*B*a^2*c*d - (5*A + 11*B)*a^2*d^2)*cos(f*x + e)
^2 - (15*B*a^2*c^2 - 5*(3*A + 8*B)*a^2*c*d + 2*(20*A + 23*B)*a^2*d^2)*cos(f*x + e) - (3*B*a^2*d^2*cos(f*x + e)
^2 - 15*B*a^2*c^2 + 5*(3*A + 7*B)*a^2*c*d - (35*A + 32*B)*a^2*d^2 - (5*B*a^2*c*d - (5*A + 14*B)*a^2*d^2)*cos(f
*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a))/(d^3*f*cos(f*x + e) + d^3*f*sin(f*x + e) + d^3*f)]

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{d \sin \left (f x + e\right ) + c} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(5/2)/(d*sin(f*x + e) + c), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 523 vs. \(2 (192) = 384\).

Time = 0.33 (sec) , antiderivative size = 523, normalized size of antiderivative = 2.40 \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {15 \, \sqrt {2} {\left (B a^{2} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - A a^{2} c^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2 \, B a^{2} c^{2} d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 2 \, A a^{2} c d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + B a^{2} c d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - A a^{2} d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{\sqrt {-c d - d^{2}} d^{3}} + \frac {2 \, {\left (12 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 10 \, B a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 10 \, A a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 40 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 15 \, B a^{2} c^{2} d^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 15 \, A a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 45 \, B a^{2} c d^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 45 \, A a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 60 \, B a^{2} d^{4} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{d^{5}}\right )}}{15 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

1/15*sqrt(2)*sqrt(a)*(15*sqrt(2)*(B*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - A*a^2*c^2*d*sgn(cos(-1/4*pi
+ 1/2*f*x + 1/2*e)) - 2*B*a^2*c^2*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 2*A*a^2*c*d^2*sgn(cos(-1/4*pi + 1/2*
f*x + 1/2*e)) + B*a^2*c*d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) - A*a^2*d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)
))*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2*e)/sqrt(-c*d - d^2))/(sqrt(-c*d - d^2)*d^3) + 2*(12*B*a^2*d^4*
sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^5 + 10*B*a^2*c*d^3*sgn(cos(-1/4*pi + 1/2*f*
x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^3 - 10*A*a^2*d^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi +
1/2*f*x + 1/2*e)^3 - 40*B*a^2*d^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^3 + 15*B*
a^2*c^2*d^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 15*A*a^2*c*d^3*sgn(cos(-1/4*p
i + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e) - 45*B*a^2*c*d^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(
-1/4*pi + 1/2*f*x + 1/2*e) + 45*A*a^2*d^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e) +
 60*B*a^2*d^4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e))/d^5)/f

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}}{c+d\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2))/(c + d*sin(e + f*x)),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2))/(c + d*sin(e + f*x)), x)